Our research examines the structure and function of a family of pore forming proteins known as ion channels. We aim to understand the mechanisms by which these proteins can identify and transport molecules across the cell membrane, and how the pores open and close to control this transport. In addition we are interested in studying transport in other kinds of pores, be they in proteins, crystaline materials or synthetic membranes. Gaining a fundamental understanding of the operation of biological pores has allowed us to design synthetic porous membranes that can be used for the desalination of sea water or to remove dangerous contaminants from water supplies.
Proteins and macromolecules can be difficult to study due to their size, functioning at the interface of microscopic molecular behaviour and macroscopic mechanical behaviour. To investigate them we use a combination of computational techniques including quantum calculations, molecular dynamics, and macroscopic modelling. In addition we utilise FRET microscopy (Förster Resonance Energy Transfer) to experimentally study the conformational changes of proteins as they function.