Who's Who in
Sciences Academia

    PAUL A. RUPAR

  • Assistant Professor
  • PAUL A. RUPAR
  •  
  • Department of Chemistry
  • http://www.bama.ua.edu/~chem/
  • University of Alabama
  •  
  • Box 870336
    Tuscaloosa, Alabama 35487-0336
  •  
  •  
  • Contact by e-mail?
  •  
  • Due to their desirable mechanical properties, ease of processability, and low cost, polymers have supplanted many traditional materials in a large range of applications. However, despite their extensive adaptation, most commercially available polymers are passive; they have useful mechanical properties but lack advanced chemical or electronic functionality.

    Our aim is to introduce novel functionality into polymeric materials through the incorporation of inorganic elements. As our research encompasses the areas of polymer chemistry, inorganic chemistry, and materials science, students in our group will gain experience in the design and synthesis of both small molecules and polymers, and will use a wide range of characterization techniques including NMR, IR, UV-Vis, size-exclusion chromatography, x-ray crystallography, light scattering, thermal analysis, and electron microscopy. Some of our areas of research are described below:

    Novel Conjugated Polymers
    Conjugated polymers are actively being studied for use in solar energy conversion, light emission, and sensors, among many other applications. The properties of conjugated polymers and their performance in devices are heavily dependent on the polymer's molecular composition. Many of the conjugated polymers currently under study are derivatives of a small number of parent polymer moieties. Our aim is to develop novel, electron deficient conjugated polymers, focusing on electron-accepting materials for use in solar voltaic devices.

    Block Copolymer Templating
    Block copolymers are macromolecules composed of two or more polymer chains linked together. In both the solid state and in solution, block copolymers can spontaneously form well-defined, controllable structures on the nanoscale through self-assembly. We plan on exploiting this self-assembly behavior to template inorganic materials with the goal of patterning novel ceramic and semi-conducting materials on the nanoscale. We are especially interested in the block copolymer nano-patterning of non-oxide containing inorganic materials
  •  

  • Start A New Search

    If you are a faculty member and are not presently included in our Who's Who in Academia, you may submit a request to be added.

    If you are currently included in our database and have previously established an account, you can update any of the information shown in your record.

 


RSS for the latest higher education jobs
Atom for the latest higher education jobs
Need a Sabbatical Home?
AcademicHomes.com

Academic Homes